SYNTHESIS OF THE ENANTIOMERS OF 3-HYDROXY-1,7-DIOXASPIRO[5.5]UNDECANE, A MINOR COMPONENT OF THE OLIVE FLY PHEROMONE Kenji Mori* and Hidenori Watanabe

Dept. of Agricultural Chemistry, The University of Tokyo, Tokyo 113, Japan

Summary: $(3\underline{R}, 6\underline{R}) - (-) - 3$ -Hydroxy-1,7-dioxaspiro[5.5]undecane 3a and its antipode were synthesized from (\underline{S}) -malic acid.

We recently reported the synthesis of the enantiomers of 1,7-dioxaspiro[5.5] undecane $\frac{1}{4}$ and 4-hydroxy-1,7-dioxaspiro[5.5] undecane $2^{,1}$ the former being the major and the latter being the minor components of the pheromone of the olive fly, <u>Dacus oleae</u>.^{2,3} Herein we report the first synthesis of both the enantiomers of 3-hydroxy-1,7-dioxaspiro[5.5] undecane $3^{,2}$, the other minor component of that pheromone.³ Racemic $3^{,2}$ was previously synthesized by Baker et al.³

(S)-Malic acid 4 furnished pure 5a, $[\alpha]_D^{21}$ -2.4°(c=3.91,MeOH), by the known method.⁴ This was converted to a bromide \tilde{b} , $[\alpha]_D^{21}$ -27.2°(c=1.25,CHCl₃), via 5b in the conventional manner. Alkylation of 7,8-dimethyl-1,5-dihydro-2,4-benzodithiepin⁵ with 6(n-BuLi/THF)gave 7(88%), mp 108.5~109°, [a]²³+1.6°(c=2.76, CHCl₃) Further alkylation of 7 with I(CH2) OEE(n-BuLi/THF) gave g(83%). Treatment of β with CuCl₂·2H₂O and CuO in Me₂CO-H₂O(99:1) under reflux⁶ yielded a complex mixture of products. Fortunately separation of the mixture into four pure isomers was possible by chromatography (Merck Lobar column, Grösse B;CHCl3-MeOH= 30:1). The isomers were eluted in the following order: $(2\underline{S}, 5\underline{R}) - 9\underline{a}(9\$), [\alpha]_{D}^{22}$ -80.8° (c=1.63, ether); $(2\underline{S}, 5\underline{S}) - 2a(15\$), [\alpha]_D^{22} + 91.3°$ (c=1.67, ether); $(3\underline{S}, 6\underline{R}) - 3a(18\$),$ $[\alpha]_{D}^{21.5} - 129^{\circ}(c=0.93, ether)^{7};$ and $(35, 65) - 3a(33^{\circ}), mp 98.5^{99.0^{\circ}}, [\alpha]_{D}^{22.5} + 115^{\circ}(c=0.93, ether)^{7};$ 0.92, ether).8 The structures of these isomers were assigned on the basis of the NMR spectral comparison with the published NMR data of 3a by Baker³ and of 9a by Ireland.⁹ Especially our data from lanthanide shifts experiments on (3<u>S</u>, (5S) - and (3S, 6R) - 3a were in complete accord with Baker's data.³ The two isomers of 9a were converted to the corresponding tosylates 9b, whose reduction with LAH gave (2R,5S) - and (2R,5R)-10. Their IR, ¹H-NMR, ¹³C-NMR, and MS data were in agreement with those reported by Francke et al. 10,11

The next task was the conversion of $(3\underline{S}, 6\underline{R}) - 3\underline{a}$ to $(3\underline{R}, 6\underline{R}) - 3\underline{a}$. For that purpose, $(3\underline{S}, 6\underline{R}) - 3\underline{a}$ was treated with 3,5-dinitrobenzoic acid, Ph₃P and EtO₂CN= NCO₂Et in THF to effect the Mitsunobu inversion¹² yielding $(3\underline{R}, 6\underline{R}) - 3\underline{b}$ (78%), mp 155 \times 156°, $[\alpha]_D^{22}$ -69.9° (c=1.60,CHCl₃).¹³ This was hydrolyzed with aq KOH/THF-MeOH to give $(3\underline{R}, 6\underline{R}) - 3\underline{a}$, mp 98.5 \times 99°, $[\alpha]_D^{22}$ -112° (c=0.92,ether). Its IR, ¹H-NMR and ¹³C-NMR data were identical with those of $(3\underline{S}, 6\underline{S}) - 3\underline{a}$. Finally transformation of $(3\underline{S}, 6\underline{S}) - 3\underline{a}$ to $(3\underline{R}, 6\underline{R}) - 3\underline{a}$ was also realized as follows. The Mitsunobu inversion of $(3\underline{S}, 6\underline{S}) - 3\underline{a}$ gave $(3\underline{R}, 6\underline{S}) - 3\underline{b}$ (87%), mp 173 \times 173.5°, $[\alpha]_D^{21.5}$ +71.7° (c=1.10, CHCl₃).¹³ This in CH₂Cl₂ was treated with 2n(OTf)₂ to effect equilibration and

the resulting mixture was separated by prep TLC to give $(3\underline{R}, 6\underline{S}) - 3\underline{b}$ (70%) and $(3\underline{R}, 6\underline{R}) - 3\underline{b}$ (29%), the latter of which afforded $(3\underline{R}, 6\underline{R}) - 3\underline{a}$ after hydrolysis^{14,15}

REFERENCES AND FOOTNOTES

1) K.Mori,T.Uematsu,H.Watanabe,K.Yanagi,M.Minobe,Tetrahedron Lett.25,3875 (1984). 2) R.Baker,R.Herbert,P.E.Howse,O.T.Jones,W.Francke,W.Reith,J.C.S.Chem. Commun.52(1980). 3) R.Baker,R.H.Herbert,A.H.Parton,Ibid.601(1982). 4) A.I. Meyers, J.P. Lawson,Tetrahedron Lett.23,4883 (1982). 5) K.Mori,H.Hashimoto,Y. Takenaka,T.Takigawa,Synthesis 720(1975). 6) K.Narasaka,T.Sakashita,T.Mukaiyama,Bull.Chem.Soc.Jpn.45,3724(1972). 7) Spectral data of (35,68)-3a:H-NMR [100MHz,Eu(fod)3,C6D6] 61.1 \sim 1.9(4H,m), 2.0 \sim 2.5(3H,m),2.5 \sim 3.1(2H,m),3.30(1H,dt, J=6,12Hz),3.80(1H,dm,J=1Hz),3.96(1H,dt,J=3,11Hz),4.48(1H,dd,J=2,12Hz),5.20 (1H,dm,J=12 Hz),5.73(1H,m,br);¹³C-NMR(25MHz,C6D6) δ 18.91,25.61,25.71,30.24, 35.58,60.70,64.50,64.89,95.18. 8) Spectral data of (35,68)-3a:H-NMR[100MHz, Eu(fod)3,C6D6] δ 1.1 \sim 2.7(8H,m),2.98(1H,m),3.50(1H,ddt,J=4,10,12Hz),3.8 \sim 4.2(2H, m),4.9 \sim 5.4(2H,m),5.66(1H,mbr);¹³C-NMR(25MHz,C6D6) δ 19.15,25.56,28.61,35.04, 35.29,60.38,64.99,66.35,94.38. 9) R.E.Ireland,P.Häblich,Chem.Ber.114,1418 (1981). 10) W.Francke,W.Reith,V.Sinnwell,Chem.Ber. 113,2686(1980). 11) W. Francke,G.Hindorf,W.Reith,Angew.Chem.Int.Ed.17,862(1978);Idem.Naturwiss.66, 619(1979). 12) 0. Mitsunobu,Synthesis 1 (1981). 13) (35,65)-3b, mp 173 \sim 73.5 \circ , (a) D^{-2} -68.8 \circ (c=0.63,CHC1₃), was also prepared from (35,68)-3a by treatment with 3,554initrobenzoic acid, DCC and DMAP in CH₂C1₂. (35,6R)-3b, mp 173 \sim 73.5 \circ , (a) D^{-2} -68.8 \circ (c=0.63,CHC1₃), was also prepared from (35,68)-3b with an axial substituent was the predominant isomer. Even in a different solvent (CC14, C₄H₆,ether,MeOH) or with TSOH as the catalyst, (3R,65)-3b was predominant. At present we have no explanation for this phenomenon. 15) Both (3R,6R)- and (35,65)-3a were of 100% e.e. as checked by the HPLC analyses of (3R,6R)- and (35,65)-3a were of 100% e.e. as checked by the HPLC analyses of (3R,6R)- and (35,65)-3b, were of 100% e.e. as checked by the HPLC analyses of (3R,6R)- and

(Received in Japan 25 September 1984)